# pSELECT-hygro-LacZ <br> A LacZ-expression plasmid selectable with Hygromycin <br> Catalog code: pseth-lacz <br> https://www.invivogen.com/pselect-hygro 

For research use only
Version 19A21-MM

## PRODUCT INFORMATION

## Contents

- $20 \mu \mathrm{~g}$ of pSELECT-hygro-LacZ plasmid provided as lyophilized DNA
- 1 ml of Hygromycin B Gold at $100 \mathrm{mg} / \mathrm{ml}$


## Storage and stability

- Product is shipped at room temperature.
- Upon receipt, store lyophilized DNA at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Store Hygromycin B Gold at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.


## Quality control

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.


## GENERAL PRODUCT USE

pSELECT plasmids are specifically designed for strong and constitutive expression of a gene of interest in a wide variety of cell lines. They allow the selection of stable transfectants and offer a variety of selectable markers. pSELECT plasmids contain two expression cassettes: the first drives the expression of the gene of interest and the second drives the expression of a large choice of dominant selectable markers for both E. coli and mammalian cells. They are both terminating with a strong polyadenylation signal (polyA) that separates the two expression cassettes thus preventing any transcription interference. The late SV40 polyA terminates the transcription of the gene of interest while the human $\beta$-globin polyA terminates the transcription of the selectable marker.
pSELECT-LacZ plasmids can be used as control vectors or for cloning of an open reading frame, as the LacZ gene is flanked by two unique restriction sites: Nco I at the $5^{\prime}$ end that encompasses the Start codon, and Nhe I at the 3'end.

## METHODS

## Plasmid resuspension:

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

## Plasmid amplification and cloning:

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory $E$. coli strains, such as DH5 $\alpha$.

## Hygromycin B usage:

This antibiotic can be used for $E$. coli at $50-100 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-500 \mu \mathrm{~g} / \mathrm{ml}$ to select Hygromycin-resistant mammalian cells.

## PLASMID FEATURES

## First expression cassette

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1 $\alpha(\mathrm{EF}-1 \alpha)$ core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 $\alpha$ promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- $1 \alpha$ core promoter to enhance stability of RNA.
- LacZ: The E. coli lacZ gene codes for the enzyme $\beta$-galactosidase which catalyzes the hydrolysis of the substrate X-Gal to produce a blue color that is easily visualized under a microscope.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: a minimal $E$. coli origin of replication to limit vector size, but with the same activity as the longer Ori.


## Second expression cassette

- CMV enh/prom: The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Hygro: Resistance to Hygromycin B is conferred by the hph gene from E. coli which encodes a phosphotransferase. The hph gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin $3^{\prime}$ UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.


## References

1. Kim D.W. et al., 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system.Gene 2: 217-223. 2. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat.Mol. Cell Biol. 1: 466-472. 3. Carswell S. \& Alwine J.C., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences.Mol. Cell Biol. 10: 4248-4258. 4. Yu J. \& Russell J.E., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA.Mol Cell Biol, 21(17):5879-88.


1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

## HindIII (245)

201 GTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCC
301 GCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACC
401 GGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTT
AgeI (552) NcoI (560)
501 TCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGTCACCATGGACCCTGTTGTGCTGCAAAGGAGAGACTGGGAGAA 1. M D P V V L Q R R D W E N 601 CCCTGGAGTGACCCAGCTCAACAGACTGGCTGCCCACCCTCCCTTTGCCTCTTGGAGGAACTCTGAGGAAGCCAGGACAGACAGGCCCAGCCAGCAGCTC
 701 AGGTCTCTCAATGGAGAGTGGAGGTTTGCCTGGTTCCCTGCCCCTGAAGCTGTGCCTGAGTCTTGGCTGGAGTGTGACCTCCCAGAGGCTGACACTGTTG
 801 TGGTGCCCAGCAACTGGCAGATGCATGGCTATGATGCCCCCATCTACACCAATGTCACCTACCCCATCACTGTGAACCCCCCTTTTGTGCCCACTGAGAA 801V V P S N W Q M H G Y D A P I Y T N V T Y P I T V N P P F 901 CCCCACTGGCTGCTACAGCCTGACCTTCAATGTTGATGAGAGCTGGCTGCAAGAAGGCCAGACCAGGATCATCTTTGATGGAGTCAACTCTGCCTTCCAC
 1001 CTCTGGTGCAATGGCAGGTGGGTTGGCTATGGCCAAGACAGCAGGCTGCCCTCTGAGTTTGACCTCTCTGCCTTCCTCAGAGCTGGAGAGAACAGGCTGG
 1101 CTGTCATGGTGCTCAGGTGGTCTGATGGCAGCTACCTGGAAGACCAAGACATGTGGAGGATGTCTGGCATCTTCAGGGATGTGAGCCTGCTGCACAAGCC
 1201 CACCACCCAGATTTCTGACTTCCATGTTGCCACCAGGTTCAATGATGACTTCAGCAGAGCTGTGCTGGAGGCTGAGGTGCAGATGTGTGGAGAACTCAGA
 1301 GACTACCTGAGAGTCACAGTGAGCCTCTGGCAAGGTGAGACCCAGGTGGCCTCTGGCACAGCCCCCTTTGGAGGAGAGATCATTGATGAGAGAGGAGGCT
 1401 ATGCTGACAGAGTCACCCTGAGGCTCAATGTGGAGAACCCCAAGCTGTGGTCTGCTGAGATCCCCAACCTCTACAGGGCTGTTGTGGAGCTGCACACTGC 2801 Y A D R V T L R L N V E N P K L W 1501 TGATGGCACCCTGATTGAAGCTGAAGCCTGTGATGTTGGATTCAGAGAAGTCAGGATTGAGAATGGCCTGCTGCTGCTCAATGGCAAGCCTCTGCTCATC
 EcoRV (1669) XmmI (1689)
1601 AGGGGAGTCAACAGGCATGAGCACCACCCTCTGCATGGACAAGTGATGGATGAACAGACAATGGTGCAAGATATCCTGCTAATGAAGCAGAACAACTTCA
 1701 ATGCTGTCAGGTGCTCTCACTACCCCAACCACCCTCTCTGGTACACCCTGTGTGACAGGTATGGCCTGTATGTTGTTGATGAAGCCAACATTGAGACACA
 1801 TGGCATGGTGCCCATGAACAGGCTCACAGATGACCCCAGGTGGCTGCCTGCCATGTCTGAGAGAGTGACCAGGATGGTGCAGAGAGACAGGAACCACCCC
 1901 TCTGTGATCATCTGGTCTCTGGGCAATGAGTCTGGACATGGAGCCAACCATGATGCTCTCTACAGGTGGATCAAGTCTGTTGACCCCAGCAGACCTGTGC 447. S V I I W S L G N E S G H G A $N$ H H D $A$ 2001 AGTATGAAGGAGGTGGAGCAGACACCACAGCCACAGACATCATCTGCCCCATGTATGCCAGGGTTGATGAGGACCAGCCCTTCCCTGCTGTGCCCAAGTG
 2101 GAGCATCAAGAAGTGGCTCTCTCTGCCTGGAGAGACCAGACCTCTGATCCTGTGTGAATATGCACATGCAATGGGCAACTCTCTGGGAGGCTTTGCCAAG 513. S I K K W L S L P G E T R P L I L C 2201 TACTGGCAAGCCTTCAGACAGTACCCCAGGCTGCAAGGAGGATTTGTGTGGGACTGGGTGGACCAATCTCTCATCAAGTATGATGAGAATGGCAACCCCT
 2301 GGTCTGCCTATGGAGGAGACTTTGGTGACACCCCCAATGACAGGCAGTTCTGCATGAATGGCCTGGTCTTTGCAGACAGGACCCCTCACCCTGCCCTCAC
 2401 AGAGGCCAAGCACCAGCAACAGTTCTTCCAGTTCAGGCTGTCTGGACAGACCATTGAGGTGACATCTGAGTACCTCTTCAGGCACTCTGACAATGAGCTC
 2501 CTGCACTGGATGGTGGCCCTGGATGGCAAGCCTCTGGCTTCTGGTGAGGTGCCTCTGGATGTGGCCCCTCAAGGAAAGCAGCTGATTGAACTGCCTGAGC
 2601 TGCCTCAGCCAGAGTCTGCTGGACAACTGTGGCTAACAGTGAGGGTGGTTCAGCCCAATGCAACAGCTTGGTCTGAGGCAGGCCACATCTCTGCATGGCA 680. L P Q P E S A G Q L W L T V R V V $\quad$ L 2701 GCAGTGGAGGCTGGCTGAGAACCTCTCTGTGACCCTGCCTGCTGCCTCTCATGCCATCCCTCACCTGACAACATCTGAAATGGACTTCTGCATTGAGCTG
 2801 GGCAACAAGAGATGGCAGTTCAACAGGCAGTCTGGCTTCCTGTCTCAGATGTGGATTGGAGACAAGAAGCAGCTCCTCACCCCTCTCAGGGACCAATTCA
 2901 CCAGGGCTCCTCTGGACAATGACATTGGAGTGTCTGAGGCCACCAGGATTGACCCAAATGCTTGGGTGGAGAGGTGGAAGGCTGCTGGACACTACCAGGC 780. T R A P L D N D I G V S E A T R I D P N A W V 3001 TGAGGCTGCCCTGCTCCAGTGCACAGCAGACACCCTGGCTGATGCTGTTCTGATCACCACAGCCCATGCTTGGCAGCACCAAGGCAAGACCCTGTTCATC 813' E A A L L Q C T A D T L A D A V L I T T A H A 3101 AGCAGAAAGACCTACAGGATTGATGGCTCTGGACAGATGGCAATCACAGTGGATGTGGAGGTTGCCTCTGACACACCTCACCCTGCAAGGATTGGCCTGA


3201 ACTGTCAACTGGCACAGGTGGCTGAGAGGGTGAACTGGCTGGGCTTAGGCCCTCAGGAGAACTACCCTGACAGGCTGACAGCTGCCTGCTTTGACAGGTG
 3301 GGACCTGCCTCTGTCTGACATGTACACCCCTTATGTGTTCCCTTTCTGAGAATGGCCTGAGGTGTGGCACCAGGGAGCTGAACTATGGTCCTCACCAGTGG 913. D L P L 3401 AGGGGAGACTTCCAGTTCAACATCTCCAGGTACTCTCAGCAACAGCTCATGGAAACCTCTCACAGGCACCTGCTCCATGCAGAGGAGGGAACCTGGCTGA


Acc65I (3584)
3501 ACATTGATGGCTTCCACATGGGCATTGGAGGAGATGACTCTTGGTCTCCTTCTGTGTCTGCTGAGTTCCAGTTATCTGCTGGCAGGTACCACTATCAGCT
 NheI (3625)
3601 GGTGTGGTGCCAGAAGTAAACCTGAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGC 1013* V W C Q K •

## HpaI (3763)

3701 TTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTTCAGG
3801 TTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAAT
3901 CAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCA
4001 TGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAA
SwaI (4112)
4101 TATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTA
4201 GTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCGAATTCTCGACTCATTCCTTTGCCCTCGGACGA 342 • E K A R P R
4301 GTGCTGGGGCGTCGGTTTCCACTATCGGCGAGTACTTCTACACAGCCATCGGTCCAGACGGCCGCGCTTCTGCGGGCGATTTGTGTACGCCCGACAGTCC
 4401 CGGCTCCGGATCGGACGATTGCGTCGCATCGACCCTGCGCCCAAGCTGCATCATCGAAATTGCCGTCAACCAAGCTCTGATAGAGTTGGTCAAGACCAAT
 4501 GCGGAAGCATATACGCCCGGAGCCGCGGCGATCCTGCAAGCTCCGGATGCCTCCGCTCGAAGTAGCGCGTCTGCTGCTCCATACAAGCCAACCACGGCCTC
 4601 CAGAAGAAGATGTTGGCGACCTCGTATTGGGAATCCCCGAACATCGCCTCGCTCCAGTCAATGACCGCTGTTATGCGGCCATTGTCCGTCAGGACATTGT
 4701 TGGAGCCGAAATCCGCGTGCACGAGGTGCCGGACTTCGGGGCAGTCCTCGGCCCAAAGCATCAGCTCATCGAGAGCCTGCGCGACGGACGCACTGACGGT 201. S G F D A H V L H R V E P C D E A W L M L E D L A Q A V S A 4801 GTCGTCCATCACAGTTTGCCAGTGATACACATGGGGATCAGCAATCGCGCATATGAAATCACGCCATGTAGTGTATTGACCGATTCCTTGCGGTCCGAAT 168 D D M V T Q W H Y V H P D A I A C I F D R W T T Y Q G I G C P C G F Sgfl (4936)
4901 GGGCCGAACCCGCTCGTCTGGCTAAGATCGGCCGCAGCGATCGCATCCATGAGCTCCGCGACGGGTTGCAGAACAGCGGGGCAGTTCGGTTTCAGGCAGGT
 5001 CTTGCAACGTGACACCCTGTGCACGGCGGGAGATGCAATAGGTCAGGCTCTCGCTGAATTCCCCAATGTCAAGCACTTCCGGAATCGGGAGCGCGGGCCGA 101 Q L T V G Q A R R S I C Y T L 5101 TGCAAAGTGCCGATAAACATAACGATCTTTGTAGAAACCATCGGCGCAGCTATTTACCCGCAGGACATATCCACGCCCTCCTACATCGAAGCTGAAAGCA 68 A F H R Y V Y R D K Y F G D A C 5201 CGAGATTCTTCGCCCTCCGAGAGCTGCATCAGGTCGGAGACGCTGTCGAACTTTTCGATCAGAAACTTCGCGACAGACGTCGCGGTGAGTTCAGGCTTTT
 BspHI (5300)

## Asel (5358)

5301 TCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAAACAGCGTGGATGGCGTCTCCAGCTTATCT 11 $\mathrm{M} \ll$
5401 GACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTTGGAAA
5501 GTCCCGTTGATTTACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATG
5601 TACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCC
5701 AGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCAC
5801 CCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGG
PacI (5932)
5901 CCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGC
6001 GTTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTT
6101 CCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGGAAGCGTGGCGCTTTCTCATA
6201 GCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGG

6401 ACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTG
6501 GTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCC

PacI (6672) SwaI (6681) NotI (6691)
6601 TTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCA

6701 ATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACT
6801 AGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

